Measurement Uncertainty online course: 828 participants from 92 countries!

On Tuesday, March 24, 2020 the web course Estimation of Measurement Uncertainty in Chemical Analysis was launched the seventh time as a MOOC (Massive Online Open Course)!

Currently 828 participants from 92 countries are registered – the largest audience the course has ever had! As was the case in the previous years, the majority of participants are from analytical laboratories. This once again demonstrates the continuing need for training in measurement uncertainty estimation for practicing analytical chemists.

The full course material is accessible from the web page https://sisu.ut.ee/measurement/uncertainty. The course materials include videos, schemes, calculation files, and numerous self-tests (among them also full-fledged measurement uncertainty calculation exercises). In order to pass the course, the registered participants have to pass six graded tests and get higher than 50% score from each of them. These tests are available to registered participants via the Moodle e-learning platform.

This course is run under the umbrella of the Estonian Center of Analytical chemistry (https://www.akki.ee/) and forms a part of the measurements and chemical analysis related master programmes at UT: Applied Measurement Science (https://ams.ut.ee/) and Excellence in Analytical Chemistry (https://www.analyticalchemistry.eu/).

 

Measurement Uncertainty online course, Mar 24 – May 5, 2020: Registration is open!

The 2020 edition of the web course (MOOC) Estimation of Measurement Uncertainty in Chemical Analysis will be running during Mar 24 – May 5, 2020. Registration is open!

The full course material (as well as the registration link) is accessible from the web page https://sisu.ut.ee/measurement/uncertainty. The course materials include videos, schemes, calculation files and numerous self-tests (among them also full-fledged measurement uncertainty calculation exercises) and examples. Almost all areas of analytical chemistry are addressed, ranging from simple titrations to sophisticated instrumental analysis, such as determining pesticide residues by LC-MS.

In order to pass the course, the registered participants have to take six graded tests and get higher than 50% score in every graded test. These tests are available to registered participants via the Moodle e-learning platform. Participants who successfully pass the course will get a certificate from University of Tartu. A digital certificate of completion is free of charge. A certificate of completion on paper can be requested for a fee of 60 euros.

You are welcome to distribute this message to potentially interested people!

 

Successful Master´s defense about ValChrom software

Thesis: “Software Tool for Validation of Chromatographic Analytical Method” by Kodjovi Hippolyte-Fayol Toulassi

Kodjovi Hippolyte-Fayol Toulassi defending his thesis

The aim of the work was the development of the back-end for ValChrom software. It was jointly supervised by professor Marlon Dumas (Institute of Computer Science) and Koit Herodes and Asko Laaniste (Institute of Chemistry). Kodjovi successfully presented both the chemistry and computer science aspects of the thesis, gaining praise from the supervisors and the opponent.

The software

ValChrom is a software tool developed with the aim of easing the burden of analytical chemists at chromatographic method validation. In ValChrom the user chooses the validation approach (Kodjovi implemented 3 guidelines: ICH, EMA bioanalysis, and Eurachem) and software recommends a respective experimental plan.

After importing experimental results, ValChrom calculates results and generates a report. Feedback and suggestions are welcome at valchrom@ut.ee.

48th International Symposium on High-Performance Liquid Phase Separations and Related Techniques

Between the 16th to 20th of June our group presented itself in HPLC 2019 in Milan. It was a 5-daylong and intense learning opportunity with more than 300 speakers and around 500 posters.

Topics ranged from fundamentals of HPLC, miniaturization to different omics, pharmaceutical analysis and innovative technologies (can HPLC have a FID as a detector?). For the first time, a whole section was dedicated to 3D printing technologies – a technique that is used to build 3 dimensional separation modules: for example, fascinating talks on using 3D printing to do liquid chromatography in 3 dimensions.

The conference gala dinner was held at the beautiful central courtyard of University of Milan under relieving cool evening sky opposing the hot temperatures of the day. HPLC 2019 also had two new additions that hopefully will become annual traditions: Separation Science Slam and HPLC Tube, offering an opportunity for scientists to express their love for their work in modern ways. The competitions were extremely creative and both the audience and participants were thoroughly enjoying the events. Participants from our analytical chemistry chair gave multiple contributions to the conference.

Ecstasy content in tablets is uneven

Max giving his talk

Max Hecht, MSc, presented an oral presentation on the evaluation of MDMA (also known as ecstasy and  ‘Molly’) content in 412 tablets and dissolution properties in 247 tablets, collected in the UK in the time period of 2001-2018. It was found that there are no physical tablet characteristics which correlate to dissolution rate classification, hence no way of users knowing a priori whether tablets were more likely to be fast or slow-releasing. Further, large within-batch variation in the dose and also dissolution rate was observed, giving the combined result of increasing significantly the danger of over-dosing.

Standard substance free quantification in LC/ESI/MS

Anneli giving her talk

Dr. Anneli Kruve presented the recent work of her group on standard substance free quantification of metabolites in green tea samples. In the metabolomics studies, the standard substances for all detected and identified metabolites are hardly ever available. The peak areas obtained from LC/HRMS analysis are also generally usable as different compounds ionize with vastly different ionization efficiencies; the differences may reach 100 million times. With the aid of ionization efficiency predictions, this shortcoming can be overcome and the absolute concentrations estimated. The current prediction accuracy for the green tea metabolites is 1.7 times, which allows comparison of different tea samples and also the identification of the samples with different origin. Importantly, the standard substance free quantitation allows transferring quantitative data from one lab to another. Anneli has also summarized the current status of standard substance free quantitation for the last issue of LCGC. You can find out more about it from kruvelab.com and quantem.co.

Novel eluent additives diversify analyst´s toolkit

Ruta giving her talk

Ruta Veigure, MSc, showed that fluoroalcohols, such as perfluoropinacol (PP) and 1,1,1,3,3,3-hexafluoro-2-methyl- 2-propanol (HFTB), are very useful alternatives to common eluent additives in RP HPLC-MS analysis, acting, among other effects, as weak ion-paring reagents. Novel eluent additives influenced elution of protonated bases by significantly improving analyte’s retention on C18 stationary phase as well as reduce the retention of acidic analytes, which are deprotonated. A comparison was performed to commonly used ammonium acetate and ammonium bicarbonate mobile phase additives. Her research will be rather influential for the analysis of pharmaceuticals, from whom the majority are basic.

Revolutionalizing pH measurements

Prof. Ivo Leito presented a poster introducing a conceptually new approach of measuring pH of mixed-solvent liquid chromatography (LC) mobile phases: the pHabs approach. The new approach is based on the recently introduced unified pH scale (pHabs scale), which enables direct comparison of acidities of solutions made in different solvents or solvents mixtures based on chemical potential of the proton in the solutions. The viewers praised the fact that real numerical values are now available showing how different the conventional pH values are from pHabs, as well as the educative aspect of the whole endeavour. Some visitors were eager to start immediately applying pHabs in their own work.

This work is part of a larger endeavor – to promote a wider usage the unified pH scale (pHabs) by the research and technology communities, which is currently in progress via the UnipHied. The UnipHied project is funded from the EMPIR programme (project 17FUN09) co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme.

Automate what can be automated in method validation

Dr. Asko Laaniste introduced the progress on ValChrom, a software for the automation of chromatographic method validation. The development of ValChrom is ongoing and feedback is being gathered from potential users in different fields of chromatography in order to adapt to real needs (contact at valchrom@ut.ee). Feedback from viewers cemented the understanding of the problem that often validation is done in spreadsheets and textual software, that are prone to error. Viewers of the poster approved the endeavour for aiming to help small and medium-sized laboratories that do not have an affordable alternative. They were equally excited to promote the software further to their colleagues in the validation department.

Eurachem 2019 workshop successfully finished!

Our group was the main organiser of the Eurachem 2019 Scientific workshop Validation of targeted and non-targeted methods of analysis, which took place in Dorpat Conference Centre in Tartu during May 20-21, 2019. This workshop also marks the 30th anniversary of Eurachem.

Approximately 160 people attended the workshop, which is the largest number of participants in the history of Eurachem workshops! The participants were from 42 countries of the member countries in Eurachem as well as Asia, North America, South America and Middle East. The farthest participants were from Fiji, the Philippines, Uruguay and Brazil.

The workshop was held with 13 oral presentations from established researchers, young scientists as well as industries. Together with 22 posters all presentations reflected the current and potential future developments related to methods validation. The workshop addressed the current status of analytical method validation in general and specifically validation of the non-targeted methods (i.e. ones where the analyte is not defined beforehand). With the speaker permissions, all presentations will shortly be available at the Eurachem website. In addition to presentations, each day a Working Group session was organised with 3 topics in parallel (Image on the left: Welcome by Dr Marina Patriarca, the Eurachem chair).

Non-targeted methods are an especially noteworthy part of the programme, because their validation involves specific issues and their validation is significantly less developed than validation of targeted methods (i.e. the “normal” analytical methods, where the analyte is known beforehand). At the same time non-targeted methods are becoming increasingly important in environmental protection, food safety, different omics areas, etc. (Image on the right: Prof. Jon Benskin from Stockholm University presenting an introduction to non-targeted analysis)

All sessions raised new issues and challenges, especially related to non-target method validation. The workshop clearly was also very inspirational for Eurachem from the point of view of preparing new guideline materials – especially the topics related to non-targeted analysis are still essentially not covered by official guidance documents.

Some example topics of the workshop: Validation of targeted methods: where are we? Validation of non-targeted methods – differences from targeted methods. Detection of a multitude of (unknown) components in complex samples: criteria for identification. Managing the huge amounts of complex data from non-targeted methods. Recent instrumental developments. Software tools for validation. (Image on the left: Dr. Koit Herodes presenting the ValChrom validation software)

The workshop certaily had a significant educational value and we are pleased by the large number of student participants: altogether close to 50! The international master’s programmes Excellence in Analytical Chemistry and Applied Measurement Science were both heavily represented: the majority of students of those programmes participated in the workshop (Image on the left: EACH and AMS students at the workshop).

The workshop was jointly organized by Eurachem and ECAC (University of Tartu, Tallinn University of Technology and the Estonian Environmental Research Centre).

 

Guests from Mülheim learning our pKa measurement method

Starting from last week the Analytical chemistry group of University of Tartu has the pleasure to host Dr Monika Lindner and Hendrik van Thienen from the group of professor Benjamin List – a worldwide known guru in the field of strongly acidic catalysts working at the Max-Planck-Institut für Kohlenforschung (Mülheim, Germany).

The purpose of their stay is to learn our pKa measurement method and set it up in Mülheim. This is the logical continuation of our group’s collaboration with the List group – the pKa values of a number of their catalysts have been measured here at Tartu (see Nature Chemistry 2018, 10, 888-894 and Angew. Chem. Int. Ed. 2017, 56, 1411-1415) – and we are glad that our pKa measurement method thereby gains even wider acceptance than it has now. We wish Monika and Hendrik all the success in learning the measurements!

(On the photo, from left: Märt Lõkov, Monika Lindner and Hendrik van Thienen)

 

Eurachem 2019 workshop: Validation of targeted and non-targeted methods of analysis

Our group is proud to be the leading organiser of the 2019 Eurachem General Assembly and the accompanying scientific workshop “Validation of targeted and non-targeted methods of analysis”!

The Workshop will take place in Tartu (Dorpat conference centre) on May 20th and 21st. The programme of the workshop, as well as registration and abstract submission are available at the event website:
https://eurachem2019.akki.ut.ee/

The workshop addresses the current status of analytical method validation in general and specifically validation of the non-targeted methods (i.e. ones where the analyte is not defined beforehand). Non-targeted methods are an especially noteworthy part of the workshop programme, because their validation involves specific issues (since analyte is not known it is not possible to make validation experiments with it) and is significantly less developed than validation of targeted methods (i.e. the “normal” analytical methods, where the analyte is known beforehand). At the same time non-targeted methods are becoming increasingly important in environmental protection, food safety, different omics areas, etc.

Some example topics of the workshop are: Validation of targeted methods: where are we? Validation of non-targeted methods – differences from targeted methods. Detection of a multitude of (unknown) components in complex samples: criteria for identification. Managing the huge amounts of complex data from non-targeted methods. Software solutions for validation.

Compact overview of the workshop can be found in the 2nd circular.

These events mark the 30th anniversary of Eurachem and are jointly organized by Eurachem and ECAC (University of Tartu, Tallinn University of Technology and the Estonian Environmental Research Centre).

We are hoping to see many of you in Tartu in May!

 

The biggest development of the SI system in decades!

Today, On Nov 16, 2018 the General Conference on Weights and Measures (CGPM) unanimously decided to fundamentally remake the SI system of measurement units. Perhaps the most important change is that the kilogram will not be defined via a physical artefact – the platinum-iridium cylinder – but in terms of the Planck constant. As a result, for the first time the entire SI system will be defined entirely on the basis of fundamental constants, which has been the aim for decades!

The change will become effective on the 2019 World metrology day – May 20, 2019.

More information can be found in the post CGPM votes unanimously to change the SI by Dr Steve Ellison at the Eurachem website.

(Image: Wikipedia)

 

UnipHied EMPIR Network at Baltic Electrochemistry Conference 2018

On Nov 05, 2018 Ivo Leito gave a presentation Unified pH about the pan-European research network of fundamental pH Research UnipHied (www.uniphied.eu) at the 7th Baltic Electrochemistry Conference organized by the University of Tartu.

The presentation started with explaining the need for the experimental realization and measurement capability of unified pH (pHabs). Thereafter the current state of art of measuring pHabs values was described and finally, some first exemplary results were highlighted.

The presentation created a lot of interest from the participants and roughly as many questions were asked as for the other four presentations of the same session put together!

As of now, it is not possible to compare pH values of solutions made in different solvents, as every solvent has its own pH scale. This situation is highly unfortunate, since it causes confusion and inaccuracies into many fields, extending far beyond the specific field of acid-base chemistry. Examples are industrial catalytic processes, food chemistry, liquid chromatography, etc.

The central aim of the UnipHied network is to establish at international level measurement capability of pHabs values that would be applicable also at routine laboratory level. The two key activities for achieving that are creating a reliable method for the experimental or computational evaluation of the liquid junction potential and between aqueous and non-aqueous solutions and developing a coherent and validated suite of calibration standards for standardizing routine measurement systems in terms of pHabs values for a variety of widespread systems (e.g., industrial mixtures, soils/waters, food products, biomaterials).

The partners of the UnipHied network are LNE (France, coordinator), BFKH (Hungary), CMI (Czech Republic), DFM (Denmark), IPQ (Portugal), PTB (Germany), SYKE (Finland), TÜBITAK-UME (Turkey), Freiburg University (Germany), ANBSensors (United Kingdom), FCiencias.ID (Portugal), UT (Estonia, initiator).

UnipHied is funded from the EMPIR programme (project 17FUN09) co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme.

 

UT analytical chemistry education activities at EcoBalt 2018 Conference

On Oct 26, 2018, Ivo Leito gave a presentation titled “Analytical chemistry education activities at University of Tartu” at the EcoBalt 2018 conference in Vilnius, Lithuania.

The presentation contains information about the online courses LC-MS Method Validation and Estimation of Measurement Uncertainty in Chemical Analysis, as well as the recently published tutorial reviews (Validation I, Validation II, LoD I, LoD II) that form the basis of the LC-MS Method Validation course.

The presentation also addresses the international master’s programmes Applied Measurement Science and Excellence in Analytical Chemistry at the University of Tartu.

The last part of the talk is devoted to the Eurachem 2018 General Assembly and Workshop that will take place in Tartu on May 20-21, 2018. The topic of the workshop is “Validation of targeted and non-targeted methods of analysis”.