Overview

- Brønsted acidity and basicity in solution
 - pK_a values
- Influence of solvent
 - Polarity, acidity, basicity
- What non-aqueous pK_a data are available
- How to estimate pK_a of X on solvent S?
Why do we need non-aqueous pK_a data?

- Most reactions and processes run **heterolytically**
 - Very often involving acid-base interactions
 - Very often in non-aqueous solutions
 - For understanding them pK_a values are necessary

- Design of **novel acids and bases**

- Development of **theoretical calculation methods**

Acidity of molecules

- Brønsted acidity of a **molecule** refers to its ability to donate proton to other molecules
 - Usually defined in terms of equilibrium constants (K_a, pK_a) or deprotonation energies (GA or ΔG_{acid})

This is the main topic of this talk
Acidity of media

- Brønsted acidity of a medium refers to its ability to donate proton to molecules in the medium
 - In aqueous solution: pH
 - Strongly acidic solutions: H_0
 - “Unified pH Scale” (pH_{abs})

Acidity of molecules in solution

- Acidity of molecules in solution is defined in the framework of the Brønsted theory via the pK_a values

$$\text{HA} + S \xleftrightarrow{K_a} A^- + SH^+$$

$$pK_a = -\log K_a = -\log \frac{a(A^-) \cdot a(SH^+)}{a(\text{HA})}$$

- pK_a: the lower the value, the more acidic
- Acidity of an acid is very different in different solvents!
Basicity of molecules in solution

- Basicity of a molecule B in solution is defined as the **acidity** of its **conjugate acid** (its pK_a value)

\[
\text{BH}^+ + \text{S} \rightleftharpoons \text{B} + \text{SH}^+ \\
pK_a = -\log K_a = -\log \frac{a(B) \cdot a(\text{SH}^+)}{a(\text{BH}^+)}
\]

pK_a: the higher the value, the more basic

Basicity of a base is very different in different solvents!

Acidity and basicity of molecules in the gas phase

- Acidity/basicity of molecules in the gas phase is expressed via deprotonation **Gibbs' free energy**

\[
\text{HA} \rightleftharpoons \text{A}^- + \text{H}^+ \\
\Delta G_{\text{acid}}^o = -RT \ln K_a
\]

\[
\text{BH}^+ \rightleftharpoons \text{B} + \text{H}^+ \\
\Delta G_{\text{base}}^o = -RT \ln K_a
\]
Gas phase

Dissociation in the gas phase
\[\Delta G^\circ_{a}(HA) >> 0 \]

- Desolvation
\[\Delta G^\circ_{ds}(HA) > 0 \]

\[-\Delta G^\circ_{a}(SH^+) << 0 \]

\[\Delta G^\circ_{s}(A^-) << 0 \]

Solution

Dissociation in solution
\[\Delta G^\circ_{a}(HA,s) \]

\[-\Delta G^\circ_{a}(SH^+) = -265.9 \text{ kcal/mol} \]

\[\Delta G^\circ_{s}(A^-) = -77.6 \text{ kcal/mol} \]

Gas phase: Acetic acid

Dissociation in the gas phase
\[\Delta G^\circ_{a}(HA) = +341.1 \text{ kcal/mol} \]

- Desolvation
\[\Delta G^\circ_{ds}(HA) = +6.7 \text{ kcal/mol} \]

\[-\Delta G^\circ_{a}(SH^+) = -265.9 \text{ kcal/mol} \]

\[\Delta G^\circ_{s}(A^-) = -77.6 \text{ kcal/mol} \]

H\textsubscript{2}O

Dissociation in solution
\[\Delta G^\circ_{a}(HA,s) = +6.5 \text{ kcal/mol} \]
Acidity in solution and in the gas phase

<table>
<thead>
<tr>
<th>Acid</th>
<th>(pK_a) (water)</th>
<th>(pK_a) (MeOH)</th>
<th>(pK_a) (DMSO)</th>
<th>(pK_a) (MeCN)</th>
<th>(\Delta G_a) (GP) kcal/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBr</td>
<td>(-9)</td>
<td>(-7)</td>
<td>5.5</td>
<td>318.3</td>
<td></td>
</tr>
<tr>
<td>2,4-Dinitrophenol</td>
<td>4.09</td>
<td>7.9</td>
<td>5.1</td>
<td>16.7</td>
<td>308.6</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>4.76</td>
<td>9.6</td>
<td>12.3</td>
<td>23.51</td>
<td>341.1</td>
</tr>
</tbody>
</table>

- Solvation energies are very different
- In water HBr is \(10^{13}\) times **stronger** than 2,4-DNP
- In the gas phase HBr is \(10^7\) times **weaker** than 2,4-DNP

1 \(pK_a\) unit \(\equiv 1.36\) kcal/mol

Acids in different media

http://tera.chem.ut.ee/~ivo/HA_UT/
Acids in different media

http://tera.chem.ut.ee/~ivo/HA_UT/

Bases in different media

http://tera.chem.ut.ee/~ivo/HA_UT/
Generalised acid-base reaction in a non-aqueous solvent

\[(AH)_S + (:B)_S \rightleftharpoons (AH\cdots B)_S \rightleftharpoons (A^-\cdots HB^+)_S \text{ or } (A^-:HB^+)_S \]

- \(K_1 \) \hspace{1cm} \(K_2 \) \hspace{1cm} \(K_3 \)
- \(K_3 \) \hspace{1cm} \(K_4 \)

- HB complex \hspace{1cm} HB complex \hspace{1cm} contact ion pair
- solvent-separated ion pair \hspace{1cm} free ions

How far the process goes depends on
--1-- Acid and base strengths of the compounds
--2-- Solvent
How does solvent influence pK_a?

- By solvating the species
 - Ions are much solvated much stronger
 - First approximation: neglect neutrals
 - Especially small ions and/or with localized charge

- HB acceptor properties / basicity
 - Solvation of H^+, HA, BH^+

- HB donor properties / acidity
 - Solvation of A^-, B:

- Dielectric constant
 - Promotes dissociation

Solvent acidity and basicity: pK_{auto}

$$K_{auto} \quad (SH)_S + (SH)_S \rightleftharpoons (SH^+_2)_S + (S^-)_S$$

$$K_{auto} = a(AH^+_2) \cdot a(S^-) \quad pK_{auto} = -\log K_{auto}$$

- pK_{auto} defines the span of pK_a scale
 - Differentiating ability
- High pK_{auto} is preferable
Solvent acidity, basicity and pK_{auto}

Some solvents

<table>
<thead>
<tr>
<th>Solvent/medium</th>
<th>ε</th>
<th>HBA: DN, B’</th>
<th>HBD α</th>
<th>pK_{auto}</th>
<th>Useful for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas phase</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Any acid or base</td>
</tr>
<tr>
<td>Heptane</td>
<td>1.94</td>
<td>0.0</td>
<td>0</td>
<td>–</td>
<td>(Any acid or base)*</td>
</tr>
<tr>
<td>THF</td>
<td>7.47</td>
<td>20, 287</td>
<td>0</td>
<td>Very high</td>
<td>Weak acids, strong bases**</td>
</tr>
<tr>
<td>1,2-Dichloro-Ethane</td>
<td>10.7</td>
<td>0.1, 40</td>
<td>Very high</td>
<td>Strong acids, weak bases**</td>
<td></td>
</tr>
<tr>
<td>MeCN</td>
<td>35.9</td>
<td>14.1, 160</td>
<td>0.19</td>
<td>ca 39</td>
<td>Strong acids, weak bases</td>
</tr>
<tr>
<td>DMSO</td>
<td>46.7</td>
<td>29.8, 362</td>
<td>0</td>
<td>ca 33</td>
<td>Weak acids, strong bases</td>
</tr>
<tr>
<td>Methanol</td>
<td>33</td>
<td>High</td>
<td>0.98</td>
<td>18.9</td>
<td>Medium acids and bases</td>
</tr>
<tr>
<td>Vesi</td>
<td>81</td>
<td>High</td>
<td>1.17</td>
<td>14.0</td>
<td>Medium acids and bases</td>
</tr>
</tbody>
</table>

* Solubility issues
** Ion-pair acidities and basicities
Self-consistent acidity scale (pK$_a$ scale) in MeCN

http://tera.chem.ut.ee/~ivo/HA_UUT/
1,2-DCE acidity scale

- The most acidic equilibrium acidity scale in a constant-composition medium

Relative acidities
- Not easy to anchor
- Some values available in literature, but are very doubtful

http://tera.chem.ut.ee/~ivo/HA_UT/

1,2-DCE acidity scale

- Ion pair acidities
- Counter-ion:
 - t-BuP,(pyrr)H+

Aqueous pK_a (H_0) values down to -10 .. -15

In pipeline:
- Weaker acids
- Weak bases

Self-consistent basicity scale in MeCN (1)

- Anchor: Pyridine
- Free ions
- Titrants:
 - TfOH
 - t-BuP$_1$(pyrr)

A. Kütt, PhD thesis

... and other works

http://tera.chem.ut.ee/~ivo/HA_UT/

Self-consistent basicity scale in MeCN (2)

A. Kütt, PhD thesis

... and other works

http://tera.chem.ut.ee/~ivo/HA_UT/
Self-consistent basicity scale in MeCN (3)

A. Kütt, PhD thesis ... and other works
http://tera.chem.ut.ee/~ivo/HA_UT/

Pyridine 12.5
Aniline 10.6
Triphenylphosphine 7.6
Diphenylamine 6.0
2-NO₂-Aniline 4.8

Self-consistent basicity scale in THF
- Anchor: Triethylamine
- Ion pairs
 - Counterion MeSO₃⁻
- Titrants:
 - MeSO₃H
 - t-BuP₄(pyrr)
 - Liberation of bases: KH

Typical issue: no pKa data for X in solvent S

- Possible solutions:
 - Measure
 - Compute
 - Usually correlations are needed for corrections
 - Correlate between solvents
 - Reliable data of similar compounds are needed in both solvents
 - Best if large span
 - Works best within a homogeneous compound series
 - Not between any solvents
 - Cross-use between solvents
 - Only suitable for "stronger-weaker" statements

Sometimes correlations are good …

MeCN vs THF, cationic acids

\[p_{K_a}^{\text{THF}} = 0.86 \cdot p_{K_a}^{\text{MeCN}} - 3.4 \]

\[R^2 = 0.967 \]

… Sometimes tricky

MeCN vs Pyridine, neutral acids

\[p_{K_a}^{\text{Pyridine}} = 1.12 \cdot p_{K_a}^{\text{MeCN}} - 15.0 \]

\[R^2 = 0.968 \]
pK_a Correlation possibilities

Legend:

- **Reliable**
- **Lower reliability**
- **Not reliable**

"+": real data available

Absolute values vs differences

Thanks to all these people!

Slides: https://analytical.chem.ut.ee
Overview: http://tera.chem.ut.ee/~ivo/HA_UT/
Funding: IUT20-14, SF0180061s08, SF0180061s08, ETF Grants No 7374, 8162

Thank you for your attention!