Prediction of ionization efficiencies in biological matrices

In the recent years, we have made significant progress in ionization efficiency studies. In our previous publications, we have shown that our approach can be applied in both electrospray positive and negative mode (we have recently also enabled comparing the logIE values measured in both ESI modes numerically), that our approach is transferable between different instruments with various ESI source geometries from all major mass spectrometric systems vendors, and that it is also transferable between different eluent compositions.

The logIE approach is already applicable in nice clean matrices such as neat solvents. We wanted to see if our approach also works with more difficult matrices, such as bodily fluids and tissues. The results were recently published in Analytica Chimica Acta.

In this study, we took a representative set of 10 compounds, including drugs, e.g., naproxen and lincomycin. As matrices, we used blood, plasma, urine, cerebrospinal fluid, brain and liver tissue homogenates and neat solvent to compare with. We carried out a simple and robust sample pretreatment of protein precipitation. We measured the IEs in a worst-case scenario in flow injection mode without any chromatographic separation.

As with different instrumental setups and solvents, the IEs vary between biological matrices, but the order of the compounds remains roughly the same. These variations between different matrices and variations between a certain biological matrix and neat solvent demonstrate that matrix affects ionization efficiencies and also the prediction models of ionization efficiencies. This, in turn, shows that matrix affects the importance of properties of compounds in the prediction model.

Even though the effects are big and matrix effect is strong we were happy to see that the correlations between IEs measured in the neat solvent and IEs measured in a biological matrix are in good correlation (R2 from 0.7 to 0.9). These good correlations were a promising start to predict IEs in biological matrices similarly to previous predictions in the neat solvent. The most accurate model was obtained for the solvent with a mismatch of 2 times which was also expected since it is the cleanest matrix. But also for liver and brain tissues the mismatch of the model is only 3-fold.

The correlation between predicted and calculated IEs is good with the average mismatch over all biological matrices of 8 times. This means that the accuracy of standard substance free quantitation has been improved by more than an order of magnitude for the set of compounds used in this study.

More details can be found in the paper published in Analytica Chimica Acta. Piia Liigand also gave a talk on the topic in ASMS which can be found here. More papers by our group on the topic of ionization efficiencies can be found here.

ASMS 2018 in San Diego

Piia Liigand giving her talk

On 3rd-7th June three members of our group focusing on ionization efficiency studies Dr. Anneli Kruve-Viil, PhD students Piia Liigand and Jaanus Liigand, participated in the 66th Annual Conference of American Society for Mass Spectrometry (ASMS) in San Diego, CA. The conference was a huge success. There were altogether about 7500 scientists participating, ca 200 oral presentations and 3300 of posters. We had two oral presentations and one poster presentation.

The conference was kicked off by a presentation by Lisa Shipley from Merck who gave a very informative talk about smart trials and moving to patient-centric clinical trials – most probably the future of clinical trials. It was very inspiring to see how a field that is considered to be relatively conservative is picking up the most modern technical solutions such as clever packages and home-based sample collection.

The first full day of the conference started with a presentation by our PhD student Piia, who gave a talk about achieving more accurate semi-quantitative analysis by predicting electrospray ionization efficiencies. She first gave an overview of the research carried out so far and then, introduced her latest results. She showed that with the help of using ionization efficiencies, concentration estimation in various biological matrices was improved by more than an order of magnitude.

Jaanus Liigand presenting his poster

Jaanus presented a poster on semiquantitative LC/ESI/MS via ionization efficiency prediction. He presented the simple and user-friendly approach of predicting ionization efficiencies using only 2D structures. We are now able to predict ionization efficiencies in both ESI positive and negative mode and in different solvent compositions without time-consuming DFT-COSMO calculations. Additionally, we have shown that using ionization efficiency predictions the validation with LC gradient elution resulted in 2.7-fold mispredicted concentrations compared to 44-fold mispredictions using directly peak areas. We were happy to see that numerous groups were interested in our studies and fruitful discussions about the results did not stop until the end of the poster session.

Dr. Anneli Kruve-Viil giving her talk

Dr. Anneli Kruve-Viil presented some of the latest results obtained in FU Berlin. She talked about using mass spectrometry and ion mobility spectrometry for investigating interlocked nature of catenanes and knots. These results will soon be shared with everyone.

In conclusion, this year’s ASMS was very successful for our group. We saw a lot of interest in our work, met our collaborators and got some new friends and possible future collaborators. We are already looking forward to the next ASMS in Atlanta. We are also grateful for our financial supporters, who made this conference possible to us: instrumentation provided by Estonian Center of Analytical Chemistry (www.akki.ee), Ministry of Education and Research of Estonia by smart specialization doctoral stipend, Graduate School of Functional Materials and Technologies, and Alexander von Humboldt Foundation.

More information about the group focusing on ionization efficiency studies can be found on the webpage kruvelab.com

What can we learn from mass spectrometry about charged droplets?

Charged droplets occur everywhere in the world. They are created by the oceans (known as sea spray aerosols), near waterfalls and in thunderstorm clouds. Such droplets are expected to play significant role in environmental processes. Similar droplets are also created in electrospray ionization (ESI) source.

Mari Ojakivi joined Mass Spectrometry lab three years ago to conduct her bachelor thesis with us. Mari started studying how different acids, salts, and bases influence the ionization of some amines in charged water droplets. Soon, some extremely interesting results were revealed that allowed to make much wider conclusions about charged droplets.

It became possible to pinpoint, that protonation of the amines is strongly dependent on the type of additives present in the droplets and is virtually independent of the pH of the solution used for “preparing” the droplets. In “normal” solutions the protonation is determined solely by the pH of the solution. This led us to conclude that some of the additives change something about the droplets that other additives do not affect. It turned out, that the factor determining the protonation is the cation present near the surface of the charged droplets. Cations, such as hydronium ion, which are strong acids protonate the compounds, while weak acids, such as ammonium cation, do not. If both types of cations are present in the solution, the protonation is determined by the ion that has higher affinity for the droplets surface. The support for this model was found from the molecular dynamics simulations carried out in Prof. Konermann’s group.

Why is the protonation in charged droplets at all important? Protonation is one of the fundamental properties of compounds; it may catalyze reactions, break up or induce complexation, change conformation of the macromolecules, etc. Therefore, it can be assumed, that the reactions and processes taking place in charged droplets also depend on the protonation.

The results were published in ChemistrySelect

New Article Published: Analytical Chemistry

Think Negative: Finding the Best Electrospray Ionization/Mass Spectrometry Mode for Your Analyte

Previously our group has developed extensive ionization efficiency scales in ESI positive and negative mode. Thus far, the comparison between the two modes has only been qualitative. Due to use of different anchor compounds the scales were not quantitatively comparable. To solve this problem and to enable direct quantitative comparison of the two ESI modes we searched for an anchor compound ionizing to the similar extent in both modes. To find such a compound we combined mass spectrometry with laser induced fluorescence measurements (to find out the solvent composition and pH in the ESI droplets), NMR and UV-Vis (to characterize the potential anchoring compounds ionization degree in corresponding solvent). Trans-3(3-pyridyl)acrylic acid was found to be a suitable anchoring compound, if analysed in mobile phase with pH 4.00.

The link between two ESI modes ionization efficiency scales enables the user to choose the most optimal ESI mode for analysis for the analyte in question.

We also compared ionization efficiencies of 33 compounds ionizing in both modes and found that, contrary to general practice, negative mode allows higher ionization efficiencies for 46% of the compounds. For 18% positive mode ESI provides better ionization efficiencies and for 36% the results obtained in both modes are comparable. However, not all compounds can be ionized with ESI negative mode, and some unfortunately also not with ESI at all.

Published in: Piia Liigand; Karl Kaupmees; Kristjan Haav; Jaanus Liigand; Ivo Leito; Marion Girod; Rodolphe Antoine; Anneli Kruve; Anal. Chem. 
DOI: 10.1021/acs.analchem.7b00096

 

Establishing Atmospheric Pressure Chemical Ionization Efficiency Scale

UT100412AT462The series of works from the UT Analytical chemistry group on measuring and predicting ionization efficiency in the electrospray (ESI) ion source of MS and LC-MS has reached a new milestone: for the first time an ionization efficiency scale for the atmospheric pressure chemical ionization (APCI) source has been established.

The work led by Dr Riin Rebane (photo on the left) resulted in APCI ionization efficiency scale containing 40 compounds with widely ranging chemical and physical properties and spanning 5 orders of magnitude of ionization efficiency. Analysis of the resulting data challenges the common knowledge about APCI as ionization method. Contrary to the common knowledge, ionization efficiency order in the APCI source is surprisingly similar to that in the ESI source and most of the compounds that are best ionized in the APCI source are not small volatile molecules. Large tetraalkylammonium cations are a prominent example. These findings suggest that the atmospheric pressure chemical ionization mechanism can be more complex than generally assumed and most probably several ionization mechanisms operate in parallel and a mechanism not relying on evaporation of neutral molecules from droplets has significantly higher influence than commonly assumed.

See the original publication Anal. Chem. 2016, 88, 3435-3439 for more information.

(Photo: Andres Tennus)